CONCRETE OVERLAY DETAILS

DECKS WITH LESS THAN 2½" COVER ON THE TOP LAYER OF REINFORCEMENT

The new concrete overlay shall provide $2\frac{1}{2}$ " of cover for the top layer of reinforcement and shall have a minimum thickness of 1.5".

The new deck thickness is determined by subtracting the existing top rebar cover from 2.5" and adding the result to the thickness of the existing deck.

REMOVAL DEPTH

C_e = existing cover

 T_e = existing deck thickness

 D_{m} = mean removal depth

 $S = \frac{1}{2}$ the maximum aggregate size

ITD Construction Specifications	Maximum Aggregate Size
Up to 1967	2"
Between 1967 & 1976	1.5"
1976 & after	1"

 $T_n = \text{new deck thickness} = T_e + (2.5 - C_e)$

$$Te - (D_m \text{--}S) = Tn - 1.5 \ \equiv \ D_m = S + C_e - 1.0$$

On the contract plan details, show D_m , S, C_e , T_e , & T_n values.

CONCRETE OVERLAY QUANTITY

Use D_{max} to calculate the concrete overlay quantity. This will provide a pay item cost that should reduce cost over-runs during construction.

$$\begin{split} D_{min} &= D_m - S \\ D_{max} &= D_m + S \end{split}$$

EXAMPLE

$$\begin{split} &T_e=6"\\ &C_e=1.25"\\ &T_n=6+(2.5\text{-}1.25)=7.25"\\ &1957\text{ ITD Construction Specifications}=2"\text{ max aggregate}\\ &S=2"/2=1"\\ &D_m=T_e-T_n+1.5+S=6-7.25+1.5+1=1.25"\\ &D_{min}=D_m-S=1.25-1=0.25"\\ &D_{max}=D_m+S=1.25+1=2.25" \end{split}$$

Concrete overlay quantity

Deck Thickness after Removal
$$T_r = T_e - D_{max} = 6 - 2.25 = 3.75$$
"
Overlay thickness = $T_n - T_r = 7.25 - 3.75 = 3.5$ "

Revisions:

June 2013 New article